Magnetic Impact on the Unsteady Separated Stagnation-Point Flow of Hybrid Nanofluid with Viscous Dissipation and Joule Heating

نویسندگان

چکیده

The behaviour of magnetic impact on the unsteady separated stagnation-point flow hybrid nanofluid with influence viscous dissipation and Joule heating is investigated numerically in this study. A new mathematical model developed, similarity solutions are obtained form ordinary differential equations (ODEs). bvp4c approach MATLAB used to determine reduced ODEs’ estimated solutions. various physical parameters scrutinised. findings revealed that skin friction coefficient increases increment nanoparticle volume fraction unsteadiness parameter. This observation also applied heat transfer rate fluid. Additionally, presence acceleration parameter provides a significant result performance. addition Eckert number increased temperature profile distribution, thereby spontaneously decreasing rate. first solution declared stable by analysis stability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Newtonian Heating on Three Dimensional MHD Flow of Couple Stress Nanofluid with Viscous Dissipation and Joule Heating

The present exploration discusses the influence of Newtonian heating on the magnetohydrodynamic (MHD) three dimensional couple stress nanofluid past a stretching surface. Viscous dissipation and Joule heating effects are also considered. Moreover, the nanofluid model includes the combined effects of thermophoresis and Brownian motion. Using an appropriate transformation, the governing non linea...

متن کامل

MHD Stagnation-Point Flow and Heat Transfer with Effects of Viscous Dissipation, Joule Heating and Partial Velocity Slip

The steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet with effects of viscous dissipation, Joule heating and partial velocity slip in the presence of a magnetic field is investigated. The partial differential equations are reduced to nonlinear ordinary differential equations by using a similarity transformation, before being solved numeri...

متن کامل

Unsteady Hydromagnetic Flow of Eyring-Powell Nanofluid over an Inclined Permeable Stretching Sheet with Joule Heating and Thermal Radiation

The present analysis deals with an unsteady magnetohydrodynamic flow of Eyring-Powell nanofluid over an inclined permeable stretching sheet. Effects of thermal radiation, Joule heating, and chemical reaction are considered. The effects of Brownian motion and thermophoresis on the flow over the permeable stretching sheet are discussed. Using Runge-Kutta fourth-order along with shooting technique...

متن کامل

Unsteady Formulations for Stagnation Point Flow Towards a Stretching and Shrinking Sheet with Prescribed Surface Heat Flux and Viscous Dissipation

The unsteady stagnation point flow and heat transfer with prescribed flux towards a stretching and shrinking sheet with viscous dissipation is studied. Similarity transformation is adopted to initially convert the governing differential equations into nonlinear ordinary differential equations. The two-point boundary value ordinary differential equations (ODE) are subsequently converted into par...

متن کامل

Impact of thermal radiation and viscous dissipation on hydromagnetic unsteady flow over an exponentially inclined preamble stretching sheet

The present numerical attempt deals the sway to transfer of heat and mass characteristics on the time-dependent hydromagnetic boundary layer flow of a viscous fluid over an exponentially inclined preamble stretching. Furthermore, the role of viscous heating, thermal radiation, uneven energy gain or loss, velocity slip, thermal slip and solutal slips are depicted. The prevailing time-dependent P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10132356